A unified description of anti-dynamo conditions for incompressible flows
نویسنده
چکیده
A general type of mathematical argument is described, which applies to all the cases in which dynamo maintenance of a steady magnetic field by motion in a uniform density is known to be impossible. Previous work has demonstrated that magnetic field decay is unavoidable under conditions of axisymmetry and in spherical or planar incompressible flows. These known results are encompassed by a calculation for flows described in terms of a generalized poloidal-toroidal representation of the magnetic field with respect to an arbitrary two dimensional surface. We show that when the velocity field is two dimensional, the dynamo growth, if any, that results, is linear in one of the projections of the field while the other projections remain constant. We also obtain criteria for the existence of and classification into two and three dimensional velocity results which are satisfied by a restricted set of geometries. In addition, we discuss the forms of spatial variation of the density and the resistivity that are allowed so that field decay still occurs for this set of geometries.
منابع مشابه
A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملThe fate of alpha dynamos at large Rm
At the heart of today’s solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha-dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large scale components from the...
متن کاملThree-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...
متن کاملPeriodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.
The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotati...
متن کاملApplication of the unified semi-analytical wall boundary conditions to 2-D incompressible SPH
This work aims at improving an incompressible SPH model (ISPH) by adapting to it the unified semi-analytical wall boundary conditions proposed by Ferrand et al. [1]. The ISPH algorithm considered is the one proposed by Lind et al. [2]. The new description of the wall boundaries allows to impose accurately a von Neumann boundary condition on the pressure that corresponds to the impermeability co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005